FEB 16 2016
abhi shelat
FFT, Median
merge-sort \((A, p, r)\)

if \(p < r\)

\[q \leftarrow \lfloor (p + r)/2 \rfloor \]

merge-sort \((A, p, q)\)

merge-sort \((A, q + 1, r)\)

merge \((A, p, q, r)\)
Karatsuba(ab, cd)

Base case: return b*d if inputs are 1-digit

ac = Karatsuba(a,c)
bd = Karatsuba(b,d)
t = Karatsuba((a+b),(c+d))
mid = t - ac - bd

RETURN ac*1002 + mid*100 + bd

3T(n/2) + 2n

4n

3n
Closest(P, SX, SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q
delta, r, j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk = { Scan SY, add pts that are delta from q.x }
For each point x in Mohawk (in order):
 Compute distance to its next 15 neighbors
 Update delta, r, j if any pair (x, y) is < delta

Return (delta, r, j)
arbit+(A[1...n])

base case if |A|<=2, ...

(lg,minl,maxl) = arbit(left(A))
(rg,minr,maxr) = arbit(right(A))

return max{maxr-minl,lg,rg},
min{minl, minr},
max{maxl, maxr}
\[
R = \begin{bmatrix}
AE + BG & AF + BH \\
CE + DG & CF + DH
\end{bmatrix} = P_1 + P_2
\]

\[
T = P_3 + P_4 = P_5 + P_1 - P_3 - P_7
\]

\[
P_1 = A(F - H)
\]
\[
P_2 = (A + B)H
\]
\[
P_3 = (C + D)E
\]
\[
P_4 = D(G - E)
\]
\[
P_5 = (A + D)(E + H)
\]
\[
P_6 = (B - D)(G + H)
\]
\[
P_7 = (A - C)(E + F)
\]
FFT($f = a[1, ..., n]$)

Base case if $n \leq 2$

$E[...] ← \text{FFT}(A_e)$ // eval A_e on $n/2$ roots of unity
$O[...] ← \text{FFT}(A_o)$ // eval A_o on $n/2$ roots of unity

combine results using equation:

\[
A(ω_i, n) = A_e(ω_i^2, n) + ω_i, n A_o(ω_i^2, n)
\]

\[
A(ω_i, n) = A_e(ω_i \mod n/2, n/2) + ω_i, n A_o(ω_i \mod n/2, n/2)
\]

Return n resulting values.
Fast Fourier Transform 2

© Jim Hatch Illustration / www.khulsey.com
FFT

input: $a_0, a_1, a_2, \ldots, a_{n-1}$

$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$$

output: evaluate polynomial A at (any) n different points.

n points on a curve

n roots of unity
$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$

Brute force method to evaluate A at n points:
\[A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \]
\[= a_0 + a_2 x^2 + a_4 x^4 + \cdots + a_{n-2} x^{n-2} + a_1 x + a_3 x^3 + a_5 x^5 + \cdots + a_{n-1} x^{n-1} \]

\[A_e(x) = a_0 + a_2 x + a_4 x^2 + \cdots + a_n x^{(n-2)/2} \]
\[A_o(x) = a_1 + a_3 x + a_5 x^2 + \cdots + a_{n-1} x^{(n-2)/2} \]

\[A(x) = A_e(x^2) + \frac{1}{2} x A_o(x^2) \]

Divide & Conquer
\[\text{FFT}(f=a[1,...,n]) \]

Evaluates degree n poly on the \(n \)th roots of unity

\[- E \leftarrow \text{FFT}(A_e) \quad \text{// } E[1...n/2] \]
\[- O \leftarrow \text{FFT}(A_0) \quad \text{// } O[1...n/2] \]

then compute

\[- A(x) = A_e(x^2) + xA_0(x^2) \quad \text{for } n \text{ poly} \]

\[T(n) = 2T(\frac{n}{2}) + \Theta(n) \]
Last remaining issue: Which points to use?

Roots of unity should have n solutions
what are they?

$x^n = 1$

Need points that have $\log(n)$ square roots

\mathbb{Z}^*_p
\[x^n = 1 \]

the n solutions are:

\[\{1, e^{2\pi i/n}, e^{2\pi i2/n}, e^{2\pi i3/n}, \ldots, e^{2\pi i(n-1)/n}\} \]

because \(e^{2\pi i} = 1 \) Euler identity

\[\left[e^{2\pi i \left(\frac{3}{4} \right)} \right]^A = (e^{2\pi i})^j = 1^j = 1 \]
\[x^n = 1 \]

the n solutions are:

consider \(e^{2\pi ij/n} \) for \(j=0,1,2,3,\ldots,n-1 \)

\[
\left[e^{(2\pi i/n)j} \right]^n = \left[e^{(2\pi i/n)n} \right]^j = [e^{2\pi i}]^j = 1^j
\]

\(e^{2\pi ij/n} = \omega_{j,n} \) is an \(n \)th root of unity

\[\omega_{0,n}, \omega_{2,n}, \ldots, \omega_{n-1,n} \]
What is this number?

\[e^{2\pi ij/n} = \omega_{j,n} \] is an \(n \)th root of unity
Taylor series expansion

of a function f around point a

$$f(y) = f(a) + \frac{f'(a)}{1!}(y - a) + \frac{f''(a)}{2!}(y - a)^2 + \frac{f'''(a)}{3!}(y - a)^2 + \cdots$$

$e^x = \text{around 0}$
What is this number?

\[e^{2\pi ij/n} = \omega_{j,n} \] is an \(n \)th root of unity

\[e^{ix} = \cos(x) + i \sin(x) \]

\[e^{2\pi ij/n} = \cos(2\pi j/n) + i \sin(2\pi j/n) \]
$e^{2\pi i j/n} = \omega_{j,n}$ is an nth root of unity

$\omega_{0,n}, \omega_{2,n}, \ldots, \omega_{n-1,n}$

Let's compute $\omega_{1,8}$

\[
\omega_{1,8} = \cos \left(\frac{2\pi}{8} \right) + i \sin \left(\frac{2\pi}{8} \right)
\]
\[
= \cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right)
\]
\[
= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}
\]
Compute all 8 roots of unity \(n = 8 \)

\[-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \]

Then graph them.
roots of unity

\[x^n = 1 \]

should have n solutions

\[e^{2\pi ij/n} = \cos\left(\frac{2\pi j}{n}\right) + i\sin\left(\frac{2\pi j}{n}\right) \]
squaring the n^{th} roots of unity

$x^n = 1$

\[\omega_{1,8} = (\frac{1}{\sqrt{2}} + \frac{i}{2})^2 = i \]

\[\omega_{3,8} = \left(\frac{-1}{\sqrt{2}} + \frac{i}{2} \right)^2 = -i \]
Thm: Squaring an n^{th} root produces an $n/2^{th}$ root.

example: \[\omega_{1,8} = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)\]

\[\omega_{1,8}^2 = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^2 = \left(\frac{1}{\sqrt{2}}\right)^2 + 2\left(\frac{1}{\sqrt{2}} \cdot \frac{i}{\sqrt{2}}\right) + \left(\frac{i}{\sqrt{2}}\right)^2\]

\[= 1/2 + i - 1/2\]
\[= i\]
squaring the n^{th} roots of unity

\(x^n = 1 \)

\(x^{n/2} = 1 \)
Thm: Squaring an n^{th} root produces an $n/2^{\text{th}}$ root.

$$\{1, e^{2\pi i (1/n)}, e^{2\pi i (2/n)}, e^{2\pi i (3/n)}, \ldots, e^{2\pi i (n/2)/n}, e^{2\pi i (n/2+1)/n}, \ldots, e^{2\pi i (n-1)/n}\}$$

Square n^{th} roots

\[
e^{\frac{2\pi i}{n}}, e^{\frac{2\pi i}{n/2}}, e^{\frac{2\pi i}{n/2}}, e^{\frac{2\pi i (n+2)/n}{n}}, e^{\frac{2\pi i (1/n)}{n/2}}
\]
Thm: Squaring an n^{th} root produces an $n/2^{\text{th}}$ root.

\[\left\{ 1, e^{2\pi i (1/n)}, e^{2\pi i (2/n)}, e^{2\pi i (3/n)}, \ldots, e^{2\pi i (n/2)/n}, e^{2\pi i (n/2+1)/n}, \ldots, e^{2\pi i (n-1)/n} \right\} \]

\[
\begin{pmatrix}
1 & e^{2\pi i (1/(n/2))} & e^{2\pi i (2/(n/2))} & e^{2\pi i (3/(n/2))} \\
& e^{2\pi i ((n/2)+1/(n/2))} \\
& & e^{2\pi i (1+1/(n/2))} \\
& & & = 1 \cdot e^{2\pi i (1/(n/2))}
\end{pmatrix}
\]
If $n=16$

- A_{e, A_0}
- $\omega_{1,8}$
- $\Omega_{e, \Omega}$
- $\Omega_{e, \Omega, 1,00}$

At the 16th roots of unity A_{e, A_0}

- $\Omega_{e, \Omega}$
- $\Omega_{e, \Omega, 1,00}$

- 2^n roots of unity

(Bad case)
\[A(x) = A_e(x^2) + xA_o(x^2) \]
evaluate at a root of unity

\[A(\omega_{i,n}) = A_e(\omega_{i,n}^2) + \omega_{i,n}A_o(\omega_{i,n}^2) \]
\[\text{n}^{\text{th}} \text{ root of unity} \]
\[\text{n}/2^{\text{th}} \text{ root of unity} \]
\[\text{n}/2^{\text{th}} \text{ root of unity} \]
\[\text{FFT}(f=a[1,...,n]) \]

Evaluates degree n poly on the \(n \)th roots of unity

\[E \leftarrow \text{FFT}(A_e) \] // eval \(A_e \) of degree \(\frac{n}{2} \) on the \(\frac{n}{2} \)th roots of unity

\[0 \leftarrow \text{FFT}(A_o) \] // “

Combine these points to produce \(A \) eval @ \(n \)th roots

\(A(w_0,n), \ldots, A(w_{n-1},n) \) using the equation

\[A(w_i,n) = A_e(w_i,n^2) + w_i^n \cdot A_o(w_i,n^2) \]
FFT($f=a[1,\ldots,n]$)

Base case if $n\leq 2$

$E[\ldots] \leftarrow \text{FFT}(A_e)$ // eval A_e on $n/2$ roots of unity
$O[\ldots] \leftarrow \text{FFT}(A_o)$ // eval A_o on $n/2$ roots of unity

combine results using equation:

$A(\omega_i,n) = A_e(\omega_i^2,n) + \omega_i,n A_o(\omega_i^2,n)$

$A(\omega_i,n) = A_e(\omega_i \mod n/2, \frac{n}{2}) + \omega_i,n A_o(\omega_i \mod n/2, \frac{n}{2})$

Return n resulting values.
\[1 \cdot x^3 + 7 \cdot x^2 + 8 \cdot x + 9 \]

For \(x = 10 \)

\[
A(x) \cdot B(x) = C(x)
\]

And then

\[\text{return } C(10) \]
\[A(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 \]
\[B(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0 \]

\[C(x) = a_3 b_3 x^6 + (a_3 b_2 + a_2 b_3) x^5 + (a_3 b_1 + a_2 b_2 + a_1 b_3) x^4 + (a_3 b_0 + a_2 b_1 + a_1 b_2 + a_0 b_3) x^3 + (a_2 b_0 + a_1 b_1 + a_0 b_2) x^2 + (a_1 b_0 + a_0 b_1) x + a_0 b_0 \]
\[y = x + 1 \]
\[y = 2x + 1 \]
$y = x + 1$

$y = 2x + 1$
\[A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 \]
\[A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + 0x^4 + 0x^5 + 0x^6 + 0x^7 \]
\[A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[
\begin{align*}
A(\omega_0) & \quad A(\omega_1) & \quad A(\omega_2) & \quad \ldots & \quad A(\omega_7) \quad \text{FFT} \\
B(\omega_0) & \quad B(\omega_1) & \quad B(\omega_2) & \quad \ldots & \quad B(\omega_7) \quad \text{FFT} \\
C(\omega_0) & \quad C(\omega_1) & \quad \ldots & \quad \ldots & \quad C(\omega_8) \quad \text{multiply}
\end{align*}
\]
\[A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[
\begin{array}{cccccccc}
A(\omega_0) & A(\omega_1) & A(\omega_2) & \ldots & A(\omega_7) & \text{FFT} \\
B(\omega_0) & B(\omega_1) & B(\omega_2) & \ldots & B(\omega_7) & \text{FFT} \\
C(\omega_0) & C(\omega_1) & C(\omega_2) & \ldots & C(\omega_7) \\
\end{array}
\]
\[A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + 0 x^4 + 0 x^5 + 0 x^6 + 0 x^7 \]

\[C(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_7 x^7 \]
application to mult

\[\Theta(n^{\log_2 3}) \]
application to mult

\[T(n) = 3T(n/2) + 6O(n) \]

\[\Theta(n^{\log_2 3}) \]
Multiplying n-bit numbers

Schönhage–Strassen ‘71 \(O(n \log n \log \log n) \)

Fürer ‘07 \(O(n \log(n)2^{\log^*(n)}) \)
Abstract. Schönhage-Strassen’s algorithm is one of the best known algorithms for multiplying large integers. Implementing it efficiently is of utmost importance, since many other algorithms rely on it as a subroutine. We present here an improved implementation, based on the one distributed within the GMP library. The following ideas and techniques were used or tried: faster arithmetic modulo $2^n + 1$, improved cache locality, Mersenne transforms, Chinese Remainder Reconstruction, the \sqrt{N} trick, Harley’s and Granlund’s tricks, improved tuning. We also discuss some ideas we plan to try in the future.

Introduction

Since Schönhage and Strassen have shown in 1971 how to multiply two N-bit integers in $O(N \log N \log \log N)$ time [21], several authors showed how to reduce other operations — inverse, division, square root, gcd, base conversion, elementary functions — to multiplication, possibly with log N multiplicative factors [5, 8, 17, 18, 20, 23]. It has now become common practice to express complexities in terms of the cost $M(N)$ to multiply two N-bit numbers, and many researchers tried hard to get the best possible constants in front of $M(N)$ for the above-mentioned operations (see for example [6, 16]).

Strangely, much less effort was made for decreasing the implicit constant in $M(N)$ itself, although any gain on that constant will give a similar gain on all multiplication-based operations. Some authors reported on implementations of large integer arithmetic for specific hardware or as part of a number-theoretic project [2, 10]. In this article we concentrate on the question of an optimized implementation of Schönhage-Strassen’s algorithm on a classical workstation.
Applications of FFT
Conclusion

$O \left(n \log n \right)$

time

$O \left(\frac{n}{\log n} \right)$

data items
String matching with *

Looking for all occurrences of

\[\text{GGC*GAG*C*GC} \]

where I don't care what the * symbol is.

\[0(4B \cdot m) \]

\[10^9, 10^6 \sim 10^{15} \]

\[10^9, \log (10^9) = 10^{10} \]
Median
Problem: given a list of \(n \) elements, find the element of rank \(n/2 \) (half are larger, half are smaller).
Problem: given a list of n elements, find the element of rank $n/2$. (half are larger, half are smaller)

First solution: sort and pluck.

$O(n \log n)$
Problem: given a list of n elements, find the element of rank i.

Key Insight:
- we do not have to “fully” sort.
- semi sort can suffice.
pick first element
partition list about this one
see where we stand
review: how to partition a list
review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than
review: how to partition a list
review: how to partition a list

is greater than p.
review: how to partition a list
review: how to partition a list
review: how to partition a list

\[\Theta(n) \]

less than

greater than.
partitioning a list about an element takes linear time.
select \((i, A[1, \ldots, n])\)

Base case if \(|A| \leq 2\)

\(p \leftarrow \text{partition}(A)\) so that all elements are either \(\leq p\).

if \((i = p)\) return \(A[p]\).

else \((i < p)\) select \((i, A[0 \ldots p-1])\)

else select \((i-p-1, A[p \ldots n])\)
select \((i, A[1, \ldots, n])\)

handle base case.

partition list about first element

if pivot \(p\) is position \(i\), return pivot

else if pivot \(p\) is in position \(> i\)

else

select \((i, A[1, \ldots, p - 1])\)

else select \(((i - p - 1), A[p + 1, \ldots, n])\)

\[T(n) = \Theta(n) + T(\frac{n}{2}) + O(n) \implies \Theta(n)\]
Assume our partition always splits list into two equal parts.
handle base case.
partition list about first element
 if pivot is position i, return pivot
else if pivot is in position $> i$
else
 select ($i, A[1, \ldots, p - 1]$)
else
 select ($i - p - 1, A[p + 1, \ldots, n]$)
Assume our partition always splits list into two equal parts.

Handle base case.

Partition list about first element

If pivot is position i, return pivot.

Else if pivot is in position $> i$

Else select $(i, A[1, \ldots, p - 1])$

Else select $((i - p - 1), A[p + 1, \ldots, n])$

\[
T(n) = T(n/2) + O(n)
\]

\[
\Theta(n)
\]
problem: what if we always pick bad partitions?

\[T(n) = T(n-5) + \Theta(n) = \Theta(n^2) \]

\[\approx T(n-5) + \Theta(n) \]
select \((i, A[1, \ldots, n]) \)

handle base case.
partition list about first element
if pivot is position \(i \), return pivot
else if pivot is in position \(> i \) select \((i, A[1, \ldots, p - 1]) \)
else select \(((i - p - 1), A[p + 1, \ldots, n]) \)
select \((i, A[1, \ldots, n])\)

handle base case.
partition list about first element
if pivot is position \(i\), return pivot
else if pivot is in position \(> i\)
else
select \((i, A[1, \ldots, p - 1])\)
else select \(((i - p - 1), A[p + 1, \ldots, n])\)

\[
T(n) = T(n - 1) + O(n)
\]

\[
\Theta(n^2)
\]
Needed:

a good partition element

partition \((A[1, \ldots, n])\)
Needed:

a good partition element

partition \((A[1, \ldots, n])\) produce an element where
30% smaller, 30% larger
solution: bootstrap

image: gucci
image: d&g
image: mark nason
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)

\[M = \]

compute the medians of each group

how big is this list \([\frac{n}{5}]\)

use \(\text{Select}(\frac{n}{10}, M)\) to pick \(p_r\)

our partition element.
partition \((A[1, \ldots, n])\)

median of each group

form a smaller list

\(B[1, \ldots, \lceil n/5 \rceil]\)

select \(\lfloor n/5 \rfloor /2, B[1, \ldots, \lfloor n/5 \rfloor]\)

use the median of this smaller list as the partition element
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result
partition \((A[1, \ldots, n])\)

- Divide list into groups of 5 elements \(\Theta(n)\)
- Find median of each small list \(\Theta(n)\)
- Gather all medians \(\Theta(n/5)\)
- Call select(...) on this sublist to find median \(S\left(\frac{n}{5}\right)\)
- Return the result

\[
P(n) = S(\lceil n/5 \rceil) + O(n)
\]
a nice property of our partition
a nice property of our partition
a nice property of our partition
SWITCH TO A BIGGER EXAMPLE

\[3 \left(\frac{1}{2} \left\lceil \frac{n}{3} \right\rceil - 2 \right) \]

Every other column has 3 elements that are smaller than \(p \).

Might be able to find elements.

Our partition \(p \) is larger than all of these elements.
a nice property of our partition
a nice property of our partition

\[3 \left(\left\lceil \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rceil - 2 \right) \]

\[\geq \frac{3n}{10} - 6 \]

\[\sim 30 \% \]

this implies there are at most \(\frac{7n}{10} + 6 \) numbers larger than \(\star \) /smaller
a nice property of our partition
\[P_2 \leq \frac{7n}{10} + 6 \leq \frac{7n}{10} + 6 \]

This is the result of partition.
select \((i, A[1, \ldots, n])\)
select \((i, A[1, \ldots, n]) \)

handle base case for small list
else pivot = FindPartitionValue(A,n) \(\longrightarrow P(n) = S\left(\frac{n}{5}\right) + \Theta(n) \)

partition list about pivot \(\longrightarrow \Theta(n) \)
if pivot is position i, return pivot
else if pivot is in position > i
else select \((i, A[1, \ldots, p-1])\) \(S\left(\frac{7n}{10} + b\right) \)
else select \((i-p-1), A[p+1, \ldots, n]\) \(S\left(\frac{n}{5} - 1\right) \)

\[S(n) = S\left(\frac{n}{5}\right) + S\left(\frac{7n}{10} + b\right) + \Theta(n) = \Theta(n) \]
FindPartition \((A[1, \ldots, n])\)

- divide list into groups of 5 elements
- find median of each small list
- gather all medians
- call select(...) on this sublist to find median
- return the result

\[
P(n) = S(\lfloor n/5 \rfloor) + O(n)
\]
select \((i, A[1, \ldots, n])\)

handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position \(i\), return pivot
else if pivot is in position > \(i\)
else
select

\[S(n) = S\left(\lceil n/5 \rceil \right) + O(n) + S\left(\frac{7n}{10} + 6 \right) \]
select \((i, A[1, \ldots, n])\)

- handle base case for small list
- else pivot = FindPartitionValue(A,n)
- partition list about pivot
- if pivot is position \(i\), return pivot
- else if pivot is in position \(> i\)
- else

\[
S(n) = S\left(\left\lfloor \frac{n}{5} \right\rfloor \right) + O(n) + S\left(\frac{7n}{10} + 6\right)
\]

\(\Theta(n)\)
Stairs(n)
 if n<=1 return 1
 return Stairs(n-1) + Stairs(n-2)
Stairs(n) if n<=1 return 1
 ret Stairs(n-1) + Stairs(n-2)

Stairs(5)

Stairs(4) Stairs(3)

Stairs(3) Stairs(2) Stairs(2) Stairs(1)

Stairs(2) Stairs(1) Stairs(1) Stairs(0) Stairs(1) Stairs(0)
initialize memory M

Stairs(n)
 if n<=1 then return 1
 if n is in M, return M[n]
 answer = Stairs(i-1)+ Stairs(i-2)
 M[n] = answer
 return answer
Stairs(n)
 if n<=1 then return 1
 if n is in M, return M[n]
 answer = Stairs(i-1)+ Stairs(i-2)
 M[n] = answer
 return answer

Stairs(5)
Stairs(n)

 stair[0]=1
 stair[1]=1

 for i=2 to n
 stair[i] = stair[i-1]+stair[i-2]

 return stair[i]
initialize memory M

$\text{Stairs}(n)$
Stairs(n)

 if n<=1 then return 1
 if n is in M, return M[n]
 answer = Stairs(i-1)+ Stairs(i-2)
 M[n] = answer
 return answer
Stairs(n)

 stair[0]=1
 stair[1]=1

 for i=2 to n
 stair[i] = stair[i-1]+stair[i-2]

 return stair[i]
Dynamic Programming
two big ideas
two big ideas
recursive structure
+ memoizing
wood cutting

Quarter Sawn Log

Regular Sawn Log

http://www.amishhandcraftedheirlooms.com/quarter-sawn-oak.htm
Spot price for lumber
Spot price for lumber

1” 2” 3” 4” 5” 6” 7” 8”
Log cutter dilemma

input to the problem: \(n, (p_1, \ldots, p_n) \)

goal:
Observation
Solution equation
Approach

\[0 \quad \ldots \quad i\]
BestLogs \(n, (p_1, \ldots, p_n) \)

\[
\text{if } n \leq 0 \text{ return } 0
\]
BestLogs\left(n,(p_1,\ldots,p_n)\right)

\begin{align*}
\text{if } n & \leq 0 \text{ return } 0 \\
\text{for } i=1 \text{ to } n \\
\text{ } \text{Best}[i] &= \max_{k=1}^{i} \{ p_k + \text{Best}[i-k] \}
\end{align*}
The actual cuts?
BestLogs($n, (p_1, \ldots, p_n))$

if $n \leq 0$ return 0

for $i = 1$ to n

Best[i] = max$_{k=1 \ldots i}$ \{ $p_k + \text{Best}[i - k]$ \}