divide & conquer
closest points
matrix mult
median
| 7.5 | 7.8 | 9.5 | 3.7 | 26.1 |
closest pair
of points
simple brute force approach takes
solve the large problem by
solving smaller problems
and combining solutions
Divide & Conquer
Divide & Conquer
Divide & Conquer

winner!
Divide & Conquer
Divide & Conquer winner!
Mohawk can contain all of the input points.
Imagine there is a grid of cubbies starting at the lowest Y point.
\[\delta > \frac{\sqrt{2}}{2} \delta \]

Insight:

Cubbies have < 1 point.
FACT: At most 1 point in each cubby
FACT: <=1 point per cubby
FACT: ≤ 1 point per cubby
FACT: \(\leq 1 \) point per cubby
FACT: \(\leq 1 \) point per cubby
\[\delta \]

\[\frac{\delta}{2} \]

\[\frac{\delta}{2} \]

\[\leq 15 \]

\[\leq 7 \text{ buckets} \]
Start
Check the next 15 boxes
Visit its by y-order
Check the next <15 boxes
Check the next <15 boxes
Closest(P)

Base case: if \(|P| \leq 2\), brute force.

Let \(q\) be the mid-point along \(x\) coordinates.

\(L, R = \text{split points into left & right halves according to } q\)

\(d_L = \text{closest}(L) \implies \text{let } \delta = \min(d_L, d_R)\)

\(M = \text{Mohawk}(q, \delta) \quad \text{// set of points that are w/m } \delta \text{ of } \forall x\)

for all points \(r \in M\) (sorted according to \(y\)-coordinate)

check next 15 points (in \(y\)-order) for a julia.

\(\delta = \min(\delta, d(r, ij))\)

Return \(\delta\).
Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the “middle-element” of points $\Theta(n)$

2. Divide P into Left, Right according to q $\Theta(n)$

3. $\delta, r, j = \min(\text{Closest(Left)}, \text{Closest(Right)})$ $2T(n/2)$

4. Mohawk = \{ Scan P, add pts that are δ from q.x \} $\Theta(r)$

5. For each point x in Mohawk (in y-order):
 \[\Theta(r) \]
 \[
 \begin{align*}
 \text{Compute distance to its next 15 neighbors} \\
 \text{Update delta, r, j if any pair (x, y) is < δ}
 \end{align*}
 \]

6. Return (δ, r, j)

 $T(n) = 2T(n/2) + \Theta(r)$ by Master's
 $\Rightarrow T(n) = \Theta(n \log n)$
Closest(P)

Base Case: If <8 points, brute force.

1. Let q be the "middle-element" of points
2. Divide P into Left, Right according to q
3. \(\delta, r, j = \text{MIN}(\text{Closest(Left)}, \text{Closest(Right)}) \)
4. Mohawk = \{ Scan P, add pts that are \(\delta \) from q.x \}
5. For each point x in Mohawk (in y-order):
 - Compute distance to its next 15 neighbors
 - Update \(\delta, r, j \) if any pair \((x,y)\) is < \(\delta \)
6. Return \((\delta,r,j)\)

Can be reduced to 7!
Details: How to do step 1?
sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14
sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14
ClosestPair(P),
Compute Sorted-in-X list SX → mergesort \(\Theta(n \log n) \)
Compute Sorted-in-Y list SY → \(\Theta(n \log n) \)
Closest(P, SX, SY) → \(\Theta(n \log n) \)

Overall solution is still \(\Theta(n \log n) \)
Closest(P, SX, SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q

\[\delta, r, j = \min(\text{Closest}(\text{Left}, LX, LY), \text{Closest}(\text{Right}, RX, RY)) \]

Mohawk = \{ Scan SY, add pts that are \(\delta \) from q.x \}

For each point x in Mohawk (in order):

- Compute distance to its next 15 neighbors
- Update \(\delta, r, j \) if any pair (x, y) is < \(\delta \)

Return \((\delta, r, j) \)
Closest(P, SX, SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q

delta, r, j = MIN(Closest(Left, LX, LY), Closest(Right, RX, RY))

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):

 Compute distance to its next 15 neighbors
 Update delta, r, j if any pair (x, y) is < delta

Return (delta, r, j)

Can be reduced to 7!
sorted in X: 13 1 5 14 9 10 7 6 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14
Closest(P, SX, SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q. Scan to get LY, RY.

delta, r, j = MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))

Mohawk = { Scan SY, add pts that are delta from q.x }

For each point x in Mohawk (in order):
 Compute distance to its next 15 neighbors
 Update delta, r, j if any pair (x, y) is < delta

Return (delta, r, j)
Closest(P,SX,SY)

Let q be the middle-element of SX

Divide P into Left, Right according to q. Scan to get LY, RY.

\[\text{delta},r,j = \text{MIN}(\text{Closest(Left, LX, LY)} \text{ Closest(Right, RX, RY)}) \]

Mohawk = \{ Scan SY, add pts that are delta from q.x \}

For each point x in Mohawk (in order):

- Compute distance to its next 15 neighbors
- Update delta,r,j if any pair (x,y) is < delta

Return (delta,r,j)

Can be reduced to 7!
sorted in X: 13 1 5 14 9 10 7 9 8 11 2 3 4 12
sorted in Y: 6 5 12 11 10 3 13 4 9 8 7 2 1 14
Closest(P, SX, SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.

\[\text{delta, r, j = MIN(Closest(Left, LX, LY) \ Closest(Right, RX, RY))} \]

Mohawk = \{ Scan SY, add pts that are delta from q.x \}

For each point x in Mohawk (in order):
 Compute distance to its next 15 neighbors
 Update delta, r, j if any pair (x, y) is < delta

Return (delta, r, j)
Closest(P, SX, SY)

Let q be the middle-element of SX
Divide P into Left, Right according to q. Scan to get LY, RY.

\[\text{delta, r, j} = \text{MIN} \left(\text{Closest(Left, LX, LY)}, \text{Closest(Right, RX, RY)} \right) \]

Mohawk = \{ Scan SY, add pts that are delta from q.x \}

For each point x in Mohawk (in order):
 Compute distance to its next 15 neighbors
 Update delta, r, j if any pair (x, y) is < delta

Return (delta, r, j)

Can be reduced to 7!
Running time for Closest pair algorithm

\[T(n) = \]
$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$$
public ClosestPair(Point2D[] points) {
 int N = points.length;
 if (N <= 1) return;

 // sort by x-coordinate (breaking ties by y-coordinate)
 Point2D[] pointsByX = new Point2D[N];
 for (int i = 0; i < N; i++)
 pointsByX[i] = points[i];
 Arrays.sort(pointsByX, Point2D.X_ORDER);

 // check for coincident points
 for (int i = 0; i < N-1; i++) {
 if (pointsByX[i].equals(pointsByX[i+1])) {
 bestDistance = 0.0;
 best1 = pointsByX[i];
 best2 = pointsByX[i+1];
 return;
 }
 }

 // sort by y-coordinate (but not yet sorted)
 Point2D[] pointsByY = new Point2D[N];
 for (int i = 0; i < N; i++)
 pointsByY[i] = pointsByX[i];

 // auxiliary array
 Point2D[] aux = new Point2D[N];

 closest(pointsByX, pointsByY, aux, 0, N-1);
}

int mid = lo + (hi - lo) / 2;
Point2D median = pointsByX[mid];

// compute closest pair with both endpoints in left subarray or both in right subarray
double delta1 = closest(pointsByX, pointsByY, aux, lo, mid);
double delta2 = closest(pointsByX, pointsByY, aux, mid+1, hi);
double delta = Math.min(delta1, delta2);

// merge back so that pointsByY[lo..hi] are sorted by y-coordinate
merge(pointsByY, aux, lo, mid, hi);

// aux[0..M-1] = sequence of points closer than delta, sorted by y-coordinate
int M = 0;
for (int i = lo; i <= hi; i++) {
 if (Math.abs(pointsByY[i].x() - median.x()) < delta)
 aux[M++] = pointsByY[i];
}

// compare each point to its neighbors with y-coordinate closer than delta
for (int i = 0; i < M; i++) {
 // a geometric packing argument shows that this loop iterates at most 7 times
 for (int j = i+1; (j < M) && (aux[j].y() - aux[i].y() < delta); j++) {
 double distance = aux[i].distanceTo(aux[j]);
 if (distance < delta) {
 delta = distance;
 if (distance < bestDistance) {
 bestDistance = delta;
 best1 = aux[i];
 best2 = aux[j];
 // StdOut.println("better distance = " + delta + " from " + best1 + " to " + best2);
 }
 }
 }
}

return delta;

arbitrage
input: array of n numbers

1, ..., n

goal: to find index i,j s.t. $i < j$ which

$$\max \{ i \geq j \mid A[i,j] - A[i,j] \}$$

We want an $\Theta(n \log n)$ algorithm!
first attempt

arbit(A[1...n])

→ (i,j) ← Arbit(A[i+1,...,n])
→ (i′,j′) ← Arbit(A[i+2,...,n])

r* ← min(A[i+1,...,n])
j* ← max(A[i+1,...,n])

Return max { (i,j) (i′,j′) (r,j) } l mean

A[j′]−A[i′]
first attempt

\text{arbit}(A[1...n])

base case if $|A| \leq 2$

\(\text{lg} = \text{arbit}(\text{left}(A)) \rightarrow T(\frac{n}{2}) \)

\(\text{rg} = \text{arbit}(\text{right}(A)) \rightarrow T(\frac{n}{2}) \)

\(\text{minl} = \min(\text{left}(A)) \rightarrow \Theta(n) \)

\(\text{maxr} = \max(\text{right}(A)) \rightarrow \Theta(n) \)

return \(\max\{\text{maxr} - \text{minl}, \text{lg}, \text{rg}\} \)

\(T(n) = 2T(\frac{n}{2}) + \Theta(n) \rightarrow \Theta(n \log n) \) solution.
first attempt: time $\Theta(n \log n)$

```
arbit(A[1...n])
  base case if $|A| \leq 2$
  lg = arbit(left(A))
  rg = arbit(right(A))
  minl = min(left(A))
  maxr = max(right(A))
  return max{maxr-minl, lg, rg}
```
better approach
Can we find a solution that has $T(n) = 2T(n/2) + O(1)$?
Can we find a solution that has $T(n) = 2T(n/2) + O(1)$?

\[
\text{minl} = \min\left(\text{left}(A)\right) \in \Theta(n)
\]

\[
\text{maxr} = \max\left(\text{right}(A)\right)
\]

return max\{maxr-minl, lg, rg\}
second attempt

\text{arbit+(A[1...n])}

\text{base case if } |A| \leq 2

\begin{align*}
(l_g, \text{min}_G, \text{max}_G) & \leftarrow \text{Arbit}(A_{[1..\lceil n/2 \rceil]}) \\
(r_g, \text{min}_R, \text{max}_R) & \leftarrow \text{Arbit}(A_{[\lceil n/2 \rceil+1..n]})
\end{align*}

\text{Return } \left(\max \{l_g, r_g, \text{max}_R - \text{min}_G, \ldots \text{maj} G \text{ min}_R \text{ min}_G \ldots \text{maj} \text{ max}_G \text{ max}_R \text{ max}_G \ldots \right)

\text{returns } (\text{best trade}, \text{min}, \text{max}) \text{ max of } A

T(n) = 2T(\frac{n}{2}) + \Theta(1)
second attempt

\[\text{arbit+}(A[1...n]) \]

base case if \(|A| \leq 2\), ...

\[(lg, minl, maxl) = \text{arbit}(\text{left}(A))\]
\[(rg, minr, maxr) = \text{arbit}(\text{right}(A))\]

return \(\max\{\maxr - \minl, lg, rg\}, \min\{minl, minr\}, \max\{maxl, maxr\} \)
\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix} \star \begin{bmatrix}
5 & 6 \\
7 & 8 \\
\end{bmatrix} =
\]
\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix} \star \begin{bmatrix}
5 & 6 \\
7 & 8 \\
\end{bmatrix} = \begin{bmatrix}
5 + 14 & 6 + 16 \\
15 + 28 & 18 + 32 \\
\end{bmatrix} = \begin{bmatrix}
19 & 22 \\
43 & 50 \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
 a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
 a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{bmatrix}
\begin{bmatrix}
 b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\
 b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n,1} & b_{n,2} & \cdots & b_{n,n}
\end{bmatrix}
= \begin{bmatrix}
 c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\
 c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n,1} & c_{n,2} & \cdots & c_{n,n}
\end{bmatrix}
\]
\[a_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j} \]
\[
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{bmatrix}
\begin{bmatrix}
b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\
b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n,1} & b_{n,2} & \cdots & b_{n,n}
\end{bmatrix}
=
\begin{bmatrix}
c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\
c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n,1} & c_{n,2} & \cdots & c_{n,n}
\end{bmatrix}
\]
\[
\begin{bmatrix}
A & B \\
C & D \\
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
A & B \\
C & D \\
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H \\
\end{bmatrix}
=
\begin{bmatrix}
AE + BG & AF + BH \\
CE + DG & CF + DH \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
=
\begin{bmatrix}
AE + BG & AF + BH \\
CE + DG & CF + DH
\end{bmatrix}
\]

\[T(n) = 8T(n/2) + \Theta(n^2)\]

\[\Theta(n^3)\]
\[
= \begin{bmatrix}
AE + BG & AF + BH \\
CE + DG & CF + DH
\end{bmatrix}
\]

[Strassen]
\[P_1 = A(F - H)\]
\[P_2 = (A + B)H\]
\[P_3 = (C + D)E\]
\[P_4 = D(G - E)\]
\[P_5 = (A + D)(E + H)\]
\[P_6 = (B - D)(G + H)\]
\[P_7 = (A - C)(E + F)\]
\[
R = \begin{bmatrix}
AE + BG & AF + BH \\
CE + DG & CF + DH
\end{bmatrix} = P_1 + P_2
\]

\[
T = P_3 + P_4
\]

\[
U = P_5 + P_1 - P_3 - P_7
\]

\[
P_1 = A(F - H)
\]

\[
P_2 = (A + B)H
\]

\[
P_3 = (C + D)E
\]

\[
P_4 = D(G - E)
\]

\[
P_5 = (A + D)(E + H)
\]

\[
P_6 = (B - D)(G + H)
\]

\[
P_7 = (A - C)(E + F)
\]
\[R = \begin{bmatrix} \frac{AE}{T} + \frac{BG}{P_3 + P_4} & \frac{AF}{U} + \frac{BH}{P_5 + P_1 - P_3} \\ \frac{CE}{T} + \frac{DG}{P_3 + P_4} & \frac{CF}{U} + \frac{DH}{P_5 + P_1 - P_3} \end{bmatrix} = P_1 + P_2 \]

\[
P_1 = A(F - H)
\]

\[
P_2 = (A + B)H
\]

\[
P_3 = (C + D)E
\]

\[
P_4 = D(G - E)
\]

\[
P_5 = (A + D)(E + H)
\]

\[
P_6 = (B - D)(G + H)
\]

\[
P_7 = (A - C)(E + F')
\]
\[R = \begin{bmatrix} \begin{align*} A E + B G & \quad AF + BH & \quad S \\ C E + D G & \quad CF + DH \\ T = P_3 + P_4 & \quad U = P_5 + P_1 - P_3 - P_7 \end{align*} \end{bmatrix} = P_1 + P_2 \]

\[P_1 = A(F - H) \]
\[P_2 = (A + B)H \]
\[M(n) = 7M(n/2) + 18n^2 \]
\[= \Theta(n^{\log_2 7}) \]
\[P_3 = (C + D)E \]
\[P_4 = D(G - E) \]
\[P_5 = (A + D)(E + H) \]
\[P_6 = (B - D)(G + H) \]
\[P_7 = (A - C)(E + F) \]
taking this idea further

3x3 matrices
1978 victor pan method

70x70 matrix using 143640
mul.ts

what is the recurrence:
Median
problem: given a list of \(n \) elements, find the element of rank \(n/2 \). (half are larger, half are smaller)
Problem: given a list of n elements, find the element of rank $n/2$. (half are larger, half are smaller)

Can generalize to i

First solution: sort and pluck.

$O(n \log n)$
problem: given a list of n elements, find the element of rank i.
problem: given a list of n elements, find the element of rank i.

key insight:
we do not have to "fully" sort.
semi sort can suffice.
pick first element
partition list about this one
see where we stand
review: how to partition a list
review: how to partition a list

GOAL: start with THIS LIST and END with THAT LIST

less than greater than
review: how to partition a list
partitioning a list about an element takes linear time.
select \((i, A[1, \ldots, n])\)
select \((i, A[1, \ldots, n])\)

handle base case.

partition list about first element

if pivot is position \(i\), return pivot
else if pivot is in position > \(i\)
else
select \((i, A[1, \ldots, p - 1])\)
else select \(((i - p - 1), A[p + 1, \ldots, n])\)
Assume our partition always splits list into two equal parts.

Handle base case.
Partition list about first element
If pivot is position i, return pivot
Else if pivot is in position $> i$
Else
Select $(i, A[1, \ldots, p - 1])$
Else select $((i - p - 1), A[p + 1, \ldots, n])$
Assume our partition always splits list into two equal parts. Handle base case. Partition list about first element. If pivot is position i, return pivot. Else if pivot is in position $> i$, select $(i, A[1, \ldots, p - 1])$. Else, select $((i - p - 1), A[p + 1, \ldots, n])$.

$$T(n) = T(n/2) + O(n)$$

$$\Theta(n)$$
problem: what if we always pick bad partitions?
select \((i, A[1, \ldots, n])\)

handle base case.
partition list about first element
if pivot is position \(i\), return pivot
else if pivot is in position > \(i\)
else
select \((i, A[1, \ldots, p - 1])\)
else select \(((i - p - 1), A[p + 1, \ldots, n])\)
select \((i, A[1, \ldots, n])\)

handle base case.
partition list about first element
if pivot is position \(i\), return pivot
else if pivot is in position \(> i\)
else
select \((i, A[1, \ldots, p - 1])\)
else select \(((i - p - 1), A[p + 1, \ldots, n])\)

\[
T(n) = T(n - 1) + O(n)
\]

\[
\Theta(n^2)
\]
Needed:

a good partition element

partition \((A[1, \ldots, n])\)
Needed:

a good partition element

partition \((A[1, \ldots, n])\) produce an element where 30% smaller, 30% larger
solution: bootstrap

image: gucci
image: d&g
image: mark nason
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n]) \)

median of each group
form a smaller list

select \(\lceil n/5 \rceil \), \(B[1, \ldots, \lceil n/5 \rceil] \)

use the median of this smaller list as the partition element
partition \((A[1, \ldots, n])\)
partition \((A[1, \ldots, n])\)

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result
partition \((A[1, \ldots, n])\)

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

\[P(n) = S\left(\lceil n/5 \rceil\right) + O(n) \]
a nice property of our partition
a nice property of our partition
a nice property of our partition
SWITCH TO A BIGGER EXAMPLE
a nice property of our partition
a nice property of our partition

\[
3 \left(\left\lfloor \frac{1}{2} \left\lfloor \frac{n}{5} \right\rfloor \right\rfloor - 2 \right) \\
\geq \frac{3n}{10} - 6
\]

this implies there are at most \(\frac{7n}{10} + 6 \) numbers larger than smaller

larger than \(\star \) /smaller

\[
\frac{3n}{10} - 6
\]
a nice property of our partition
\[\leq \frac{7n}{10} + 6 \]
select \((i, A[1, \ldots, n]) \)
select \((i, A[1, \ldots, n])\)

handle base case for small list
else pivot = FindPartitionValue(A,n)
partition list about pivot
if pivot is position i, return pivot
else if pivot is in position > i
else
select \((i, A[1, \ldots, p - 1])\)
else select \(((i - p - 1), A[p + 1, \ldots, n])\)
FindPartition \((A[1, \ldots, n])\)

divide list into groups of 5 elements
find median of each small list
gather all medians
call select(...) on this sublist to find median
return the result

\[
P(n) = S(\lceil n/5 \rceil) + O(n)
\]
select \((i, A[1, \ldots, n])\)

handle base case for small list
else pivot = \(\text{FindPartitionValue}(A, n)\)
partition list about pivot
if pivot is position \(i\), return pivot
else if pivot is in position > \(i\)
else
select \((i, A[1, \ldots, p-1])\)
else select \(((i-p-1), A[p+1, \ldots, n])\)

\[S(n) = S\left(\left\lceil n/5 \right\rceil\right) + O(n) + S(7n/10 + 6)\]
select \((i, A[1, \ldots, n])\)

- handle base case for small list
- else pivot = \text{FindPartitionValue}(A, n)
- partition list about pivot
 - if pivot is position \(i\), return pivot
 - else if pivot is in position \(> i\)
 - else select \((i, A[1, \ldots, p - 1])\)
 - else select \(((i - p - 1), A[p + 1, \ldots, n])\)

\[
S(n) = S(\lfloor n/5 \rfloor) + O(n) + S(7n/10 + 6)
\]

\(\Theta(n)\)
arbitrage
input: array of n numbers

1 n

goal:
first attempt
first attempt

\text{arbit}(A[1...n])
first attempt

arbit(A[1...n])
 base case if |A|=1
 lg = arbit(left(A))
 rg = arbit(right(A))
 minl = min(left(A))
 maxr = max(right(A))
 return max{maxr-minl,lg,rg}
better approach
second attempt

\texttt{arbit\+(A[1\ldots n])}

\hspace{1em} base case if \(|A|=1\)
second attempt

arbit+(A[1...n])

base case if |A|=1

(lg, minl, max) = arbit(left(A))
(rg, mi, maxr) = arbit(right(A))

return max{maxr-minl, lg, rg}